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Abstract

The Gompertz and logistic function in oncology is a popular method
for modelling the empirical growth curves of avascular and vascular tu-
mours in the early stage. However, these phenomenological models are
purely descriptive and biological vindication is missing. The purpose of
this article is to provide possible biological substantiation of the Gompertz
and logistic function when used in relation to tumour growth.
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1 Introduction

A great number of mathematical models for tumour growth have been proposed
in the past to increase the understanding of the tumour growth process. Already
in 1932 it was proposed by C. P. Winsor that the Gompertz and logistic curve
possess similar properties which make them useful for the empirical represent-
ation of growth phenomena.Laird showed 1964 that the growth of a variety
of tumours of the mouse, rat and rabbit, whether transplanted or primary, is
well described by a Gompertz equation. The Gompertz equation was primarily
used in a quite different context, as a model for the increase in mortality rate
with age in a human population. Benjamin Gompertz (5 March 1779 – 14 July
1865), a British self-educated mathematician and actuary, worked out a new
series of tables of mortality for the Royal Society, which led in 1825 to his law
of human mortality. The law rests on an a priori assumption that a human’s
resistance to death decreases as the age increase. The model can be written as
dN(t)
dt = a ·N(t)−b ·N(t) · ln (N(t)) = −b ·N(t) · ln

(
N(t)
K

)
, where N(t) represents

the number of individuals at time t, a and b are constants and K = e
a
b .

The logistic equation was discovered by Pierre Francois Verhulst, a Belgian
mathematician and a doctor in number theory. In 1838 he published the equa-

tion dN(t)
dt = r ·N(t) ·

(
1− N(t)

K

)
, where N(t) represents number of individuals

at time t, r the intrinsic growth rate and K the maximum number of individu-
als that the environment can support. 7 years later Verhulst published a paper,
where he called the solution to this the logistic function, and the equation is
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now called the logistic equation. Raymond Pearl and Lowell Reed rediscovered
the model in 1920 and promoted its use. Also the logistic differential equation
has been intensively used to model the growth of tumours, for example by V.
G. Vaidya and F. J. Alexandro.

Nevertheless the phenomenological models that we have introduced in this
section are still of limited use on their own, because they are merely descriptive
rather than explanatory. Nicholas F. Britton raises a question in his book Es-
sential Mathematical Biology : The Gompertz equation... ’provides an excellent
fit to empirical growth curves for avascular and vascular tomours in their early
stage, often much better than the more intuitive von Bertalanffy equation, but
why should this be so? Interpretations in terms of − log

(
N
K

)
as the proliferat-

ive fraction of cells in the tumour cell population and derivations in terms of
the entropy of the system have been proposed, but a satisfactory answer to the
question has yet to be found ’.

We will provide a possible answer to this question in the next section, ap-
proximating a tumour-biology based model by series representations to derive
the Gompertz and logistic equation.

2 Model Derivations

We will first assume a spherical tumour. We will further assume that the growth
of the tumour is limited by nutrients and/or oxygen which enter through the
surface. If V is the sphere volume, A is the sphere surface and r is the sphere
radius, V

2
3 ∝ A applies, which can be demonstrated easily:

V
2
3 =

(
4

3
· π · r3

) 2
3

=
2 · 3

√
2
π

3
2
3

· π · r2. (1)

A well-known tumour model is the Mendelsohn model with the tumour
volume V (t) and the proportionality constant a:

dV (t)

dt
= a · V (t)

2
3

V (t)︸ ︷︷ ︸
A/V ratio

·V (t) = a · V (t)
2
3 . (2)

The Mendelsohn model describes unlimited growth. However, a tumour in
the early stage has a sigmoid growth curve, meaning that we cannot follow this
model further, but must make a modification by approximating the A/V ratio.
We will use the following series for this:

x−k =

∞∑
n=0

(−k · ln (x))
n

n!
. (3)

Proof. We make use of the Maclaurin series ex =
∑∞
n=0

xn

n! for −∞ < x < ∞.

We rewrite x−k = e−k·ln(x) and replacing x by −k · ln(x) in the Maclaurin series

of ex. Hence x−k =
∑∞
n=0

(−k·ln(x))n
n! .
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To find where the series (3) converges, we use the ration test and compute:

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣∣∣∣∣∣
(−k · ln (x))

n+1

(n+ 1)!

(−k · ln (x))
n

n!

∣∣∣∣∣∣∣∣∣ = lim
n→∞

∣∣∣∣k · ln (x) · n!

(n+ 1)!

∣∣∣∣ = 0.

Thus the domain is all real numbers.
Substituting now x by V in (3) and adding the proportionality constant a

yields

a · V −k = a ·
∞∑
n=0

(−k · ln (V ))
n

n!
. (4)

Truncating the series expansion of series (4) and keeping only the terms of degree
less than or equal to n = 1, it follows that

a · V −k ≈ −a · k · ln (V ) + a. (5)

We define a · k = b, 1
k = c and K = ec. K will always be designated as the

carrying capacity below. Therefore equation (5) becomes

a · V −k ≈ −b · ln
(
V

K

)
. (6)

Substituting a · V (t)
2
3

V (t) of equation (2) by −b · ln
(
V
K

)
of equation (6) yields

dV (t)

dt
= −b · V (t) · ln

(
V (t)

K

)
. (7)

This is the Gompertz differential equation after the growth model of the same
name.

A general differential equation can be obtained from (4):

dV (t)

dt
= a · V (t) ·

i∑
n=0

kn · (− ln (V (t)))
n

n!
. (8)

For i = 0 we get the exponential growth law, for i = 1 as shown the Gompertz
growth law and for i =∞ the Mendelsohn model.

A second series representation of x−k is given by

x−k =

∞∑
n=0

(
−k
n

)
· (x− 1)

n
(9)

Proof. An extension of the Binomial Theorem states, that if k is any number
and |x| < 1, then (1 + x)

k
=
∑∞
n=0

(
k
n

)
·xn. Hence (1 + x)

−k
=
∑∞
n=0

(−k
n

)
·xn.

Replacing x by x−1 in the binomial series yields x−k =
∑∞
n=0

(−k
n

)
·(x− 1)

n
.

We use again the ration test to find where the series (9) converges. Assuming
k, n and x are positive:
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lim
n→∞

∣∣∣∣∣
( −k
n+1

)
· (x− 1)

n+1(−k
n

)
· (x− 1)

n

∣∣∣∣∣ = lim
n→∞

|x− 1| · (k + n)

n+ 1
= |x− 1| .

Therefore series (9) converges when |x− 1| < 1, and we obtain a further general
differential equation:

dV (t)

dt
= a · V (t) ·

i∑
n=0

(
−k
n

)
· (V (t)− 1)

n
. (10)

The result for i = 1 is the Bernoulli differential equation of the logistic growth
model. We define a · k = b and 1 + 1

k = K, which immediately results in the
following:

dV (t)

dt
= b · V (t) · (K − V (t)) . (11)

For i = 0 we get again the exponential growth law and for i =∞, we of course
obtain the Mendelsohn model.

3 Discussion

As we have shown in the previous section that the Gompertz and logistic equa-
tion are able to approximate the Mendelsohn model for some small V if the con-
stants are accordingly chosen. As the Gompertz and logistic equation provide
an excellent fit to empirical growth curves of tumours we can assume that a
tumour at least in the early stage follows the surface/volume model, but then
changes its behavior latest at the point it can not uptake enough nutrients by
its surface anymore. The tumour enters then the vascular stage by stimulat-
ing blood-vessel formation. Beside the improved nutrient supply the tumour is
now able to spread (metastases). Using the series (3) and (9) respectively the
general differential equations (8) and (10) we can approximate the Mendelsohn
model more accurately and over a wider interval as the Gompertz and logistic
equation can do. As the radius of convergence of series (9) is restricted, series
(3) respectively equation (8) is more applicable to obtain new tumour growth
models. The big drawback is that the differential equation solutions become
more and more complicated.
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n
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5 ·
∑3
n=0

(− 1
3
n
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Fig. 1 Approximations of f(x) = 5 · x− 1
3 using the series (3) and (9)
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